Понятие о гомеостазе. Структурный и физиологический гомеостаз. Роль нервной и эндокринной систем.

Одно из основных свойств всего жи­вого — способность сохранять отно­сительное динамическое постоянство внутренней среды. Это свойство полу­чило название гомеостаз(гр. homoios — равный, stasis — состояние). Го­меостаз выражается в относительном постоянстве химического состава, ос­мотического давления, устойчивости ос­новных физиологических функций в организмах растений, животных,, че­ловека. Гомеостаз каждого индивиду­ума специфичен и обусловлен его ге­нотипом.

Регуляторные гомеостатические ме­ханизмы функционируют на клеточном, органном, организменном и над-организменном уровнях.

Таким образом, понятие гомеостаза не связано со стабильно­стью процессов. В ответ на действие внешних факторов происходит неко­торое изменение физиологических по­казателей, а включение регуляторных систем обеспечивает поддержание от­носительного постоянства внутренней среды. Способность к поддержанию постоянства внутренней среды пред­ставляет собой свойство, выработав­шееся в процессе эволюции и наслед­ственно закрепленное.

Основные компоненты гомеостаза. Клеточный и молекулярно-генетический уровни. Клетка является сложной биологической системой, которой присуща саморегуляция. Установление гомеостаза клеточной среды обеспе­чивается мембранными системами, с которыми связаны биоэнергетические процессы и регулирование транспорта веществ в клетку и из нее. В клетке непрерывно идут процессы изменения и восстановления органоидов. Это про­исходит и в обычных условиях среды, но особенно интенсивно при действии различных повреждающих факторов (изменение температуры, гипоксия, не­достаток питательных веществ).


В основе реакций, осуществляемых в клетке на ультраструктурном уровне, лежат генетические механизмы гомео­стаза.

Важнейшее свойство живого — самовоспроизведение — основано на про­цессе редупликации ДНК. Сам меха­низм этого процесса, при котором новая нить ДНК строится строго компле­ментарно около каждой из составляю­щих молекул двух старых нитей, яв­ляется оптимальным для точной пере­дачи информации. Точность этого про­цесса очень высока, но все же, хотя и очень редко, происходят ошибки при редупликации. Нарушение структуры молекулы ДНК может происходить и в ее первичных цепях вне связи с редупликацией под воздействием эндо­генных и экзогенных химических со­единений, под влиянием физических факторов. В большинстве случаев про­исходит восстановление генома клетки, исправление повреждения посредством системы репарирующих ферментов. Ре­парация играет важнейшую роль в восстановлении структуры генетиче­ского материала и сохранении нор­мальной жизнеспособности клетки. При повреждении механизмов репарации происходит нарушение гомеостаза как на клеточном, так и на организменном уровнях.


Важным механизмом сохранения го­меостаза является диплоидное состоя­ние соматических клеток у эукариот. Диплоидные клетки отличаются боль­шей стабильностью функционирования, так как наличие у них двух генетиче­ских программ повышает надежность генотипа. Большинство мутаций, ока­зывающих часто неблагоприятное дей­ствие, являются рецессивными. Нали­чие у гетерозиготной особи доминант­ного аллеля обеспечивает либо пол­ное, либо частичное подавление в фе­нотипе рецессивной мутации. Стабили­зация сложной системы генотипа обес­печивается и явлениями полимерии, а также другими видами взаимодей­ствия генов. Большую роль в процес­сах гомеостаза играют регуляторные гены, контролирующие активность оперонов.

Упрокариот, имеющих более при­митивную организацию генотипа, на­блюдается меньшая автономность ор­ганизмов от колебания внешней среды и более низкая стабильность самого генетического аппарата.

Общие закономерности гомеостаза.Способность сохранять гомеостаз — одно из важнейших свойств живой си­стемы, находящейся в состоянии дина­мического равновесия с условиями внешней среды. Способность к поддер­жанию гомеостаза неодинакова у раз­личных видов. По мере усложнения организмов эта способность прогрес­сирует, делая их в большей степени не­зависимыми от колебаний внешних ус­ловий. Особенно это проявляется у выс­ших животных и человека, имеющих сложные нервные, эндокринные и им­мунные механизмы регуляции. Влия­ние среды на организм человека в ос­новном является не прямым, а опосре­дованным, благодаря созданию им искусственной среды, успехам техники и цивилизации.

Молекулярно-генетический уровень гомеостаза обеспечивается процессами редупликации ДНК, репарации. На­дежность генетического аппарата эукариот обусловлена наличием двух гено­мов в каждой соматической клетке.

На уровне клетки происходит восста­новление ее мембран, компенсаторное увеличение ряда органоидов при необ­ходимости повышения функции (уве­личение количества митохондрий, ри­босом).

Контроль за генетическим постоян­ством осуществляется иммунной систе­мой. Эта система состоит из анатомиче­ски разобщенных органов, представля­ющих функциональное единство. Свой­ство иммунной защиты достигло высше­го развития у птиц и млекопитающих.

В системных механизмах гомеостаза действует кибернетический принцип от­рицательной обратной связи: при лю­бом возмущающем воздействии происхо­дит включение нервных и эндокринных механизмов, которые тесно взаимосвя­заны. Нормализация физиологических показателей осуществляется на основе свойства раздражимости. У более вы­соко организованных животных это ус­ложняется, дополняется сложными по­веденческими реакциями, включаю­щими инстинкты, условно-рефлектор­ную и элементарную рассудочную де­ятельность, а у человека абстрактное мышление — качественно новое явле­ние, положившее начало социальной эволюции, где действуют другие за­коны.

Кибернетика –наука, устанавливающая общие принципы управления саморегулирующимися системами. Живые организмы также являются саморегулирующимися системами, и поэтому к ним применимы все кибернетические понятия и принципы регуляции.

 

В основе работы кибернетической системы лежит процесс передачи и обработки информации. В работу системы постоянно вносятся коррективы, характер которых зависит от тех отклонений, которые наблюдаются на входе. Для живых организмов входными сигналами служат пища, вода, свет, звук, температура. Выходные сигналы – реакция органа или ткани, выделение секрета и т.д. Важным элементом кибернетической системы является

обратная связьвлияние выходного сигнала на блок управления. Различают отрицательную и положительную обратную связь. Отрицательная обратная связь – направлена на восстановление исходного состояния кибернетической системы, в случае ее отклонения от нормы. Пример: работа термостата.

Положительная обратная связь – направлена на усиление возникшего отклонения кибернетической системы от исходного состояния. Пример: кровотечение из крупного сосуда, рост организма в онтогенезе.

Нервная регуляция:высокая скорость наступления ответной реакции;реакция кратковременная;реакция носит локальный характер.

Гуморальная регуляция(обеспечивается выделением в кровь гормонов):реакция наступает медленно;реакция длительна;реакция носит разлитой характер.

Таким образом, обе системы в целостном организме дополняют друг друга.В основе функционирования нервной и эндокринной систем лежит принцип действия отрицательной обратной связи.

Гомеостаз и почему мы откатываемся / Хабр

Все мы в то или иное время старались добиться больших перемен. И почти все из нас, составив грандиозные планы, обнаружили, что изменение какого-то аспекта нашей жизни или организации, будь то приобретение нового навыка или просто изменение старого процесса, привело к большому откату назад.

Откуда такое несоответствие?

Как Джордж Леонард говорит в своей классической книге «Мастерство», основанной на его многолетнем опыте практики айкидо, нет необходимости бичевать себя или выводить сложное психологическое объяснение.

Проблема объясняется очень простой ментальной моделью, которая описывает как системы регулируются посредством циклов обратной связи: гомеостаз

.

Откат – это общее для всех переживание. Каждый из нас сопротивляется значительным изменениям, хоть в худшую, хоть в лучшую сторону. Наше тело, мозг и поведение имеют внутреннюю тенденцию оставаться неизменными в довольно ограниченных границах, а при изменении – откатываться назад, и очень хорошо, что они это делают. Просто подумайте: если бы температура вашего тела повысилась или понизилась на 10 процентов, вы были бы в большой беде. Это же касается и уровня сахара в крови, и любых других функций организма.

Это состояние равновесия, это сопротивление изменениям называется гомеостазом. Оно характеризует все саморегулируемые системы – от бактерии до лягушки, от человека до семьи, от организации до целой культуры – и относится как к психологическим состояниям и поведению, так и к физическому состоянию.

Простейший пример гомеостаза находится в домашней системе отопления. Термостат на стене задает комнатную температуру; когда температура в зимний день опускается ниже заданного уровня, термостат посылает электрический сигнал, который включает обогреватель. Обогреватель замыкает круг, подавая тепло в помещение, где расположен термостат. Когда комнатная температура достигает заданного значения, термостат посылает электрический сигнал обратно в обогреватель, выключая его, таким образом поддерживая гомеостаз. Поддержание нужной температуры в помещении требует лишь одной петли обратной связи. Поддержание жизни и здоровья даже простейшего одноклеточного организма требует тысяч. А поддержание в состоянии гомеостаза человека требует миллиардов переплетающихся электрохимических сигналов, пульсирующих в головном мозге, несущихся по нервным волокнам, проходящих по кровотоку. Один пример: у каждого из нас у поверхности кожи около 150 тысяч крошечных термостатов в виде нервных окончаний, чувствительных к потере тепла нашего тела, и еще чуть глубже в коже 16 тысяч или около того тех, которые сообщают нам о проникновении тепла извне.

Еще более чувствительный термостат находится в гипоталамусе в основании мозга, рядом с ветвями главной артерии, которая доставляет кровь от сердца в голову. Этот термостат может улавливать даже малейшие изменения температуры крови. Когда вам становится холодно, эти термостаты подают сигнал к закрытию потовых желез, пор и маленьких кровеносных сосудов близ поверхности тела. Активность желез и мышечное напряжение вызывают у вас дрожь для выработки большего количества тепла, и ваши чувства передают в ваш мозг очень четкое послание, побуждая вас продолжать двигаться, надеть больше одежды, поближе к кому-то прижаться, искать укрытие или развести костер.


Когда идет речь о системах, гоместаз представляется нормой, однако мы часто забываем о нем или думаем, что не подчиняемся простому закону природы. Но нет нужды полностью отчаиваться. Гомеостаз часто довольно благоприятен, и он поддерживает жизнь и здоровье систем. Без него не работали бы наши тела, равно как и наши социальные системы.
Гомеостаз в социальных группах привносит дополнительные петли обратной связи. Семьи сохраняют стабильность с помощью наставлений, увещеваний, наказаний, привилегий, подарков, милостей, знаков одобрения и ласки, и даже с помощью чрезвычайно тонкого языка тела и мимики. Социальные группы большие по размеру, чем семья, прибавляют различные типы систем обратной связи. Национальная культура, например, обеспечивается законодательным процессом, правоохранительной системой, образованием, народным творчеством, спортом и играми, экономическими поощрениями, которые благоприятствуют определенным видам деятельности, а также сложной паутиной нравов, маркеров престижа, знаменитых ролевых моделей и стиля, которые в значительной степени опираются на средства массовой информации как на национальную нервную систему. Хотя мы можем подумать, что наша культура без ума от нового, главная функция всего этого – как и в случае с петлями обратной связи в вашем теле – это сохранение вещей такими, какие они есть.

Проблема в том, что гомеостаз, как и естественный отбор и как сама жизнь, ненаправлен и не имеет «системы ценностей» – он не сохраняет то, что хорошо, и не отвергает то, что плохо. Он похож на инерцию: это простой алгоритм, который поддерживает вещи в движении как они были.
Скажем, например, что последние двадцать лет – со старшей школы – вы были почти совсем малоподвижны. Сейчас большинство ваших друзей занимаются фитнесом, и вы решили, что если не можете победить фитнес-революцию, то присоединитесь к ней. Покупка трико и кроссовок – это весело, как и первые шаги, когда вы начинаете бежать по школьной дорожке рядом с домом. Затем, примерно на трети первого круга, происходит что-то жуткое. Может, вас внезапно тошнит. Может, кружится голова. Возможно, есть странное паническое ощущение в груди. Возможно, вы умираете. Нет, вы умираете.

Более того, конкретные ощущения, которые вы испытываете, вероятно, сами по себе несущественны. Что вы на самом деле ощущаете, так это сигнал тревоги гомеостатической системы – звон колоколов, мигание огней. Тревога! Тревога! Значительные изменения в дыхании, сердечном ритме, метаболизме. Что бы вы ни делали, прекратите немедленно. Гомеостаз, помните, не различает между тем, что вы бы назвали переменами к лучшему и переменами к худшему. Он противостоит всем переменам. После двадцати лет без физических упражнений ваше тело считает сидячий образ жизни «нормальным»; начало перемен к лучшему интерпретируется как угроза. Поэтому вы медленно идете к своей машине, посчитав, что поищите какую-нибудь другую революцию, к которой можно примкнуть.


Леонард предлагает несколько возможных решений или, по крайней мере, подход к проблеме гомеостаза. Хорошо то, что гомеостаз не всемогущ; это просто сила, с которой мы должны работать. Он предлагает пять способов подойти к проблеме:
1. Имейте в виду то, как работает гомеостаз. Это может быть самым важным пунктом. Ожидайте сопротивления и отдачи. Поймите, что когда начинают раздаваться сигналы тревоги, это не обязательно означает, что вы больны, или безумны, или ленивы, или что вы приняли неверное решение, вступив на путь к мастерству. На самом деле, вы можете воспринимать эти сигналы как указание на то, что ваша жизнь определенно меняется – точно как вы и хотели. Конечно, может быть вы начали что-то, что вам не подходит; только вы можете решить. Но в любом случае, не паникуйте и не сдавайтесь при первых признаках трудностей. Вы также можете ожидать сопротивления со стороны друзей, семьи и коллег. (Гомеостаз, как мы заметили, применим к социальным системам так же, как и к индивидуумам.) Скажем, раньше вы с трудом вылезали из постели в 7:30 и едва вползали на работу к 9:00. Теперь, на пути к мастерству, в 6:00 вы уже на трехмильной пробежке, а в 8:30 уже в офисе, полные энергии. Вы можете предполагать, что ваши коллеги будут безумно рады, но не будьте слишком уверены. А когда вернетесь домой, все еще неистово желая бежать, думаете, семья будет приветствовать перемены? Может быть. Имейте в виду, что вся система должна измениться, когда меняется любая ее часть. Так что не удивляйтесь, если некоторые из людей, которых вы любите, начнут незаметно или откровенно подрывать ваше саморазвитие. Не то, чтобы они желали вам зла; это просто работает гомеостаз.

2. Будьте готовы вести переговоры с вашим неприятием перемен. Так что же делать, когда вы сталкиваетесь с сопротивлением, когда мигают красные огни и раздаются сигналы тревоги? Ну, вы не отступаете и не пробиваете себе дорогу. Переговоры – ключ к успешным долгосрочным переменам во всем, начиная с увеличения скорости бега и заканчивая преобразованием организации. Бегун на дальние дистанции, стремящийся уменьшить время прохождения отмеренного пути, ведет переговоры с гомеостазом, используя боль не как противника, а как лучший ориентир на результат. Менеджер, нацеленный на изменения, держит глаза и уши открытыми для признаков недовольства или расстройства, а затем играет на грани недовольства, неизбежного спутника преобразований. Тонкое искусство игры на грани в этом случае предполагает готовность сделать один шаг назад на каждые два вперед, иногда наоборот. Оно также требует решимости продолжать толкать, но не без внимания. Простое отключение внимания к предупреждениям лишает вас ориентиров и чревато повреждением системы. Простое продавливание вопреки предупредительным сигналам увеличивает возможность отката. Вы никогда не можете быть точно уверены, где именно возникнет сопротивление. Чувство тревоги? Психосоматические реакции? Склонность к самосаботажу? Ссоры с семьей, друзьями или коллегами по работе? Ничего из вышеперечисленного? Будьте начеку. Будьте готовы к серьезным переговорам.

3. Создайте систему поддержки. Вы можете делать это в одиночку, но очень полезно иметь других людей, с которыми вы можете разделить радости и опасности, связанные с изменениями, которые вы делаете. Лучшая система поддержки будет включать людей, которые прошли или проходят через подобный процесс, людей, которые могут рассказать собственные истории изменений и послушать ваши, людей, которые будут поддерживать вас, когда вы начинаете откатываться и поощрять вас, когда вы этого не делаете. Путь мастерства, к счастью, почти всегда способствует развитию социальных групп. В своей основополагающей книге «Человек играющий» Йохан Хёйзинга отмечает тенденцию спорта и игр к объединению людей. Игровое сообщество, отмечает он, как правило сохраняется и после игры, вдохновленное «чувством, что они совместно пребывают в некоем исключительном положении, совместно делают одно важное дело, обособляясь от прочих и порывая с общими для всех нормами». То же самое можно сказать и о многих других занятиях, независимо от того, называют ли их формально спортом: искусства и ремесла, охота, рыбалка, йога, дзен, профессии, «офис». А что, если ваш путь к мастерству одинок? Что, если вы не найдете единомышленников на этом конкретном пути? По крайней мере, вы можете дать близким вам людям понять, что вы делаете, и попросить их о поддержке.

4. Придерживайтесь регулярности практики. Люди, приступающие к любому виду изменений, могут достичь стабильности и комфорта путем более или менее регулярной практики полезной деятельности не столько ради достижения внешней цели, сколько ради нее самой. Идущий по пути к мастерству опять-таки удачлив, ибо практика в этом смысле (как я уже не раз говорил) является основой самого пути. Обстоятельства особенно благоприятны в случае, если вы уже наладили регулярную практику в чем-то другом, прежде чем принять вызов и изменение начала следующего. Легче начать применять принципы мастерства в своей профессии или в основных отношениях, если вы уже привыкли к регулярной утренней зарядке. Практика – это привычка, и любая регулярная практика обеспечивает своего рода опорный гомеостаз, устойчивую основу в период нестабильности изменений.

5. Посвятите себя непрерывному образованию. Мы склонны забывать, что обучение – это гораздо больше, чем чтение книг. Учиться – значит меняться. Образование, независимо от того, касается ли оно книг, тела или поведения – это процесс, который меняет учащегося. Оно не обязано заканчиваться по окончании университета или в сорока- или шестидесяти- или восьмидесятилетнем возрасте, и лучшее обучение подразумевает обучение тому, как учиться, то есть меняться. Учащийся пожизненно – это, по сути, тот, кто научился справляться с гомеостазом просто потому, что он или она делает это постоянно. Любитель, Одержимый и Хакер – все они в своем роде учащиеся, но обучение на протяжении всей жизни – это исключительная прерогатива тех, кто вступил на путь мастерства – путь, который никогда не заканчивается.

5. Гомеостаз.

Организм можно определить как физико-химическую систему, существующую в окружающей среде в стационарном состоянии. Именно эта способность живых систем сохранять стационарное состояние в условиях непрерывно меняющейся среды и обусловливает их выживание. Для обеспечения стационарного состояния у всех организмов – от морфологически самых простых до наиболее сложных – выработались разнообразные анатомические, физиологические и поведенческие приспособления, служащие одной цели – сохранению постоянства внутренней среды.

Впервые мысль о том, что постоянство внутренней среды обеспечивает оптимальные условия для жизни и размножения организмов, была высказана в 1857 г. французским физиологом Клодом Бернаром. На протяжении всей его научной деятельности Клода Бернара поражала способность организмов регулировать и поддерживать в достаточно узких границах такие физиологические параметры, как температура тела или содержание в нем воды. Это представление о саморегуляции как основе физиологической стабильности он резюмировал в виде ставшего классическим утверждения: «Постоянство внутренней среды является обязательным условием свободной жизни».

Клод Бернар подчеркивал различие между внешней средой, в которой живут организмы, и внутренней средой, в которой находятся их отдельные клетки, и понимал, как важно, чтобы внутренняя среда оставалась неизменной. Так, например, млекопитающие способны поддерживать температуру тела, несмотря на колебания окружающей температуры. Если становится слишком холодно, животное может переместиться в более теплое или более защищенное место, а если это невозможно, вступают в действие механизмы саморегуляции, которые повышают температуру тела и препятствуют теплоотдаче. Адаптивное значение этого заключается в том, что организм как целое функционирует более эффективно, так как клетки, из которых он состоит, находятся в оптимальных условиях. Системы саморегуляции действуют не только на уровне организма, но и на уровне клеток. Организм является суммой составляющих его клеток, и оптимальное функционирование организма как целого зависит от оптимального функционирования образующих его частей. Любая самоорганизующаяся система поддерживает постоянство своего состава — качественного и количественного. Это явление называется гомеостаз, и оно свойственно большинству биологических и социальных систем. Термин гомеостаз в 1932 г. ввел американский физиолог Уолтер Кэннон.

Гомеостаз (греч. homoios – подобный, тот же самый; stasis-состояние, неподвижность) – относительное динамическое постоянство внутренней среды (крови, лимфы, тканевой жидкости) и устойчивость основных физиологических функций (кровообращения, дыхания, терморегуляции, обмена веществ и т.д.) организма человека и животных. Регуляторные механизмы, поддерживающие физиологическое состояние или свойства клеток, органов и систем целостного организма на оптимальном уровне, называются гомеостатическими. Исторически и генетически понятие гомеостаза имеет биологические и медико-биологические предпосылки. Там оно соотносится как конечный процесс, период жизни с отдельным обособленно взятым организмом или человеческим индивидуумом как чисто биологическим явлением. Конечность существования и необходимость выполнения своего предназначения — репродукции себе подобного — позволяют определить стратегию выживания отдельного организма через понятие «сохранение». «Сохранение структурно-функциональной стабильности» — суть любого гомеостаза, управляемого гомеостатом или саморегулируемого.

Как известно, живая клетка представляет подвижную, саморегулирующую систему. Ее внутренняя организация поддерживается активными процессами, направленными на ограничение, предупреждение или устранение сдвигов, вызываемых различными воздействиями из окружающей и внутренней среды. Способность возвращаться к исходному состоянию после отклонения от некоторого среднего уровня, вызванного тем или иным «возмущающим» фактором, является основным свойством клетки. Многоклеточный организм представляет собой целостную организацию, клеточные элементы которой специализированы для выполнения различных функций. Взаимодействие внутри организма осуществляется сложными регулирующими, координирующими и коррелирующими механизмами с участием нервных, гуморальных, обменных и других факторов. Множество отдельных механизмов, регулирующих внутри- и межклеточные взаимоотношения, оказывает в ряде случаев взаимно противоположные воздействия, уравновешивающие друг друга. Это приводит к установлению в организме подвижного физиологического фона (физиологического баланса) и позволяет живой системе поддерживать относительное динамическое постоянство, несмотря на изменения в окружающей среде и сдвиги, возникающие в процессе жизнедеятельности организма.

Как показывают исследования, существующие у живых организмов способы регуляции имеют много общих черт с регулирующими устройствами в неживых системах, таких как машины. И в том и в другом случае стабильность достигается благодаря определенной форме управления.

Само представление о гомеостазе не соответствует концепции устойчивого (не колеблющегося) равновесия в организме – принцип равновесия не приложим к сложным физиологическим и биохимическим процессам, протекающим в живых системах. Неправильно также противопоставление гомеостаза ритмическим колебаниям во внутренней среде. Гомеостаз в широком понимании охватывает вопросы циклического и фазового течения реакций, компенсации, регулирования и саморегулирования физиологических функций, динамику взаимозависимости нервных, гуморальных и других компонентов регуляторного процесса. Границы гомеостаза могут быть жесткими и пластичными, меняться в зависимости от индивидуальных возрастных, половых, социальных, профессиональных и иных условий.

Особое значение для жизнедеятельности организма имеет постоянство состава крови — жидкой основы организма (fluidmatrix), по выражению У. Кеннона. Хорошо известна устойчивость ее активной реакции (pH), осмотического давления, соотношения электролитов (натрия, кальция, хлора, магния, фосфора), содержания глюкозы, числа форменных элементов и т. д. Так, например, pH крови, как правило, не выходит за пределы 7,35-7,47. Даже резкие расстройства кислотно-щелочного обмена с патологическим накоплением кислот в тканевой жидкости, например при диабетическом ацидозе, очень мало влияют на активную реакцию крови. Несмотря на то, что осмотическое давление крови и тканевой жидкости подвергается непрерывным колебаниям вследствие постоянного поступления осмотически активных продуктов межуточного обмена, оно сохраняется на определенном уровне и изменяется только при некоторых выраженных патологических состояниях. Сохранение постоянного осмотического давления имеет первостепенное значение для водного обмена и поддержания ионного равновесия в организме. Наибольшим постоянством отличается концентрация ионов натрия во внутренней среде. Содержание других электролитов колеблется также в узких границах. Наличие большого количества осморецепторов в тканях и органах, в том числе в центральных нервных образованиях (гипоталамусе, гиппокампе), и координированной системы регуляторов водного обмена и ионного состава позволяет организму быстро устранить сдвиги в осмотическом давлении крови, происходящие, например, при введении воды в организм.

Несмотря на то, что кровь представляет общую внутреннюю среду организма, клетки органов и тканей непосредственно не соприкасаются с ней. В многоклеточных организмах каждый орган имеет свою собственную внутреннюю среду (микросреду), отвечающую его структурным и функциональным особенностям, и нормальное состояние органов зависит от химического состава, физико-химических, биологических и других свойств этой микросреды. Ее гомеостаз обусловлен функциональным состоянием гистогематических барьеров и их проницаемостью в направлениях кровь — тканевая жидкость; тканевая жидкость — кровь.

Особо важное значение имеет постоянство внутренней среды для деятельности центральной нервной системы: даже незначительные химические и физико-химические сдвиги, возникающие в цереброспинальной жидкости, глии и околоклеточных пространствах, могут вызвать резкое нарушение течения жизненных процессов в отдельных нейронах или в их ансамблях. Сложной гомеостатической системой, включающей различные нейрогуморальные, биохимические, гемодинамические и другие механизмы регуляции, является система обеспечения оптимального уровня артериального давления. При этом верхний предел уровня артериального давления определяется функциональными возможностями барорецепторов сосудистой системы тела, а нижний предел – потребностями организма в кровоснабжении.

К наиболее совершенным гомеостатическим механизмам в организме высших животных и человека относятся процессы терморегуляции; у гомойотермных животных колебания температуры во внутренних отделах тела при самых резких изменениях температуры в окружающей среде не превышают десятых долей градуса.

Организующая роль нервного аппарата (принцип нервизма) лежит в основе широко известных представлений о сущности принципов гомеостаза. Однако ни принцип доминанты, ни теория барьерных функций, ни общий адаптационный синдром, ни теория функциональных систем, ни гипоталамическое регулирование гомеостаза и многие другие теории не позволяют полностью решить проблему гомеостаза.

В некоторых случаях представление о гомеостазе не совсем правомерно используется для объяснения изолированных физиологических состояний, процессов и даже социальных явлений. Так возникли встречающиеся в литературе термины «иммунологический», «электролитный», «системный», «молекулярный», «физико-химический», «генетический гомеостаз» и т.п. Предпринимались попытки свести проблему гомеостаза к принципу саморегулирования. Примером решения проблемы гомеостаза с позиций кибернетики является попытка Эшби (W.R. Ashby, 1948) сконструировать саморегулирующее устройство, моделирующее способность живых организмов поддерживать уровень некоторых величин в физиологически допустимых границах.

Перед исследователями и клиницистами на практике встают вопросы оценки приспособительных (адаптационных) или компенсаторных возможностей организма, их регулирования, усиления и мобилизации, прогнозирования ответных реакций организма на возмущающие воздействия. Некоторые состояния вегетативной неустойчивости, обусловленные недостаточностью, избытком или неадекватностью регуляторных механизмов, рассматриваются как «болезни гомеостаза». С известной условностью к ним могут быть отнесены функциональные нарушения нормальной деятельности организма, связанные с его старением, вынужденная перестройка биологических ритмов, некоторые явления вегетативной дистонии гипер — и гипокомпенсаторная реактивность при стрессовых и экстремальных воздействиях и т.д.

Для оценки состояния гомеостатических механизмов в физиологическом эксперименте и в клинической практике применяются разнообразные дозированные функциональные пробы (холодовая, тепловая, адреналиновая, инсулиновая, мезатоновая и др.) с определением в крови и моче соотношения биологически активных веществ (гормонов, медиаторов, метаболитов) и т.д.

Биофизические механизмы гомеостаза.

С точки зрения химической биофизики гомеостаз – это состояние, при котором все процессы, ответственные за энергетические превращения в организме, находятся в динамическом равновесии. Это состояние обладает наибольшей устойчивостью и соответствует физиологическому оптимуму. В соответствии с представлениями термодинамики организм и клетка могут существовать и приспосабливаться к таким условиям среды, при которых в биологической системе возможно установление стационарного течения физико-химических процессов, т.е. гомеостаза. Основная роль в установлении гомеостаза принадлежит в первую очередь клеточным мембранным системам, которые ответственны за биоэнергетические процессы и регулируют скорость поступления и выделения веществ клетками.

С этих позиций основными причинами нарушения являются необычные для нормальной жизнедеятельности неферментативные реакции, протекающие в мембранах; в большинстве случаев это цепные реакции окисления с участием свободных радикалов, возникающие в фосфолипидах клеток. Эти реакции ведут к повреждению структурных элементов клеток и нарушению функции регулирования. К факторам, являющимся причиной нарушения гомеостаза, относятся также агенты, вызывающие радикалообразование, — ионизирующие излучения, инфекционные токсины, некоторые продукты питания, никотин, а также недостаток витаминов и т.д.

Одним из основных факторов, стабилизирующих гомеостатическое состояние и функции мембран, являются биоантиокислители, которые сдерживают развитие окислительных радикальных реакций.

Возрастные особенности гомеостаза у детей.

Постоянство внутренней среды организма и относительная устойчивость физико-химических показателей в детском возрасте обеспечиваются при выраженном преобладании анаболических процессов обмена над катаболическими. Это является непременным условием роста и отличает детский организм от организма взрослых, у которых интенсивность метаболических процессов находится в состоянии динамического равновесия. В связи с этим нейроэндокринная регуляция гомеостаза детского организма оказывается более напряженной, чем у взрослых. Каждый возрастной период характеризуется специфическими особенностями механизмов гомеостаза и их регуляции. Поэтому у детей значительно чаще, чем у взрослых, встречаются тяжелые нарушения гомеостаза, нередко угрожающие жизни. Эти нарушения чаще всего связаны с незрелостью гомеостатических функций почек, с расстройствами функций желудочно-кишечного тракта или дыхательной функции легких.

Рост ребенка, выражающийся в увеличении массы его клеток, сопровождается отчетливыми изменениями распределения жидкости в организме. Абсолютное увеличение объема внеклеточной жидкости отстает от темпов общего нарастания веса, поэтому относительный объем внутренней среды, выраженный в процентах от веса тела, с возрастом уменьшается. Эта зависимость особенно ярко выражена на первом году после рождения. У детей более старших возрастов темпы изменений относительного объема внеклеточной жидкости уменьшаются. Система регуляции постоянства объема жидкости (волюморегуляция) обеспечивает компенсацию отклонений в водном балансе в достаточно узких пределах. Высокая степень гидратации тканей у новорожденных и детей раннего возраста определяет значительно более высокую, чем у взрослых, потребность ребенка в воде (в расчете на единицу массы тела). Потери воды или ее ограничение быстро ведут к развитию дегидратации за счет внеклеточного сектора, т. е. внутренней среды. При этом почки — главные исполнительные органы в системе волюморегуляции — не обеспечивают экономии воды. Лимитирующим фактором регуляции является незрелость канальцевой системы почек. Важнейшая особенность нейроэндокринного контроля гомеостаза у новорожденных и детей раннего возраста заключается в относительно высокой секреции и почечной экскреции альдостерона, что оказывает прямое влияние на состояние гидратации тканей и функцию почечных канальцев.

Регуляция осмотического давления плазмы крови и внеклеточной жидкости у детей также ограничена. Осмолярность внутренней среды колеблется в более широком диапазоне ( 50 мосм/л), чем у взрослых

( 6 мосм/л). Это связано с большей величиной поверхности тела на 1 кг веса и, следовательно, с более существенными потерями воды при дыхании, а также с незрелостью почечных механизмов концентрации мочи у детей. Нарушения гомеостаза, проявляющиеся гиперосмосом, особенно часто встречаются у детей периода новорожденности и первых месяцев жизни; в более старших возрастах начинает преобладать гипоосмос, связанный главным образом с желудочно-кишечными заболеванием или болезнями почек. Менее изучена ионная регуляция гомеостаза, тесно связанная с деятельностью почек и характером питания.

Ранее считалось, что основным фактором, определяющим величину осмотического давления внеклеточной жидкости, является концентрация натрия, однако более поздние исследования показали, что тесной корреляции между содержанием натрия в плазме крови и величиной общего осмотического давления при патологии не существует. Исключение составляет плазматическая гипертония. Следовательно, проведение гомеостатической терапии путем введения глюкозосолевых растворов требует контроля не только за содержанием натрия в сыворотке или плазме крови, но и за изменениями общей осмолярности внеклеточной жидкости. Большое значение в поддержании общего осмотического давления во внутренней среде имеет концентрация сахара и мочевины. Содержание этих осмотически активных веществ и их влияние на водно-солевой обмен при многих патологических состояниях могут резко возрастать. Поэтому при любых нарушениях гомеостаза необходимо определять концентрацию сахара и мочевины. В силу вышесказанного у детей раннего возраста при нарушении водно-солевого и белкового режимов может развиваться состояние скрытого гипер — или гипоосмоса, гиперазотемии.

Важным показателем, характеризующим гомеостаз у детей, является концентрация водородных ионов в крови и внеклеточной жидкости. В антенатальном и раннем постнатальном периодах регуляция кислотно-щелочного равновесия тесно связана со степенью насыщения крови кислородом, что объясняется относительным преобладанием анаэробного гликолиза в биоэнергетических процессах. При этом даже умеренная гипоксия у плода сопровождается накоплением в его тканях молочной кислоты. Кроме того, незрелость ацидогенетической функции почек создает предпосылки для развития «физиологического» ацидоза (сдвиг кислотно-щелочного равновесия в организме в сторону относительного увеличения количества анионов кислот.). В связи с особенностями гомеостаза у новорожденных нередко возникают расстройства, стоящие на грани между физиологическими и патологическими.

Перестройка нейроэндокринной системы в пубертатном периоде (периоде полового созревания) также сопряжена с изменениями гомеостаза. Однако функции исполнительных органов (почки, легкие) достигают в этом возрасте максимальной степени зрелости, поэтому тяжелые синдромы или болезни гомеостаза встречаются редко, чаще же речь идет о компенсированных сдвигах в обмене веществ, которые можно выявить лишь при биохимическом исследовании крови. В клинике для характеристики гомеостаза у детей необходимо исследовать следующие показатели: гематокрит, общее осмотическое давление, содержание натрия, калия, сахара, бикарбонатов и мочевины в крови, а также рН крови, р02 и рСО2.

Особенности гомеостаза в пожилом и старческом возрасте.

Один и тот же уровень гомеостатических величин в различные возрастные периоды поддерживается за счет различных сдвигов в системах их регулирования. Например, постоянство уровня артериального давления в молодом возрасте поддерживается за счет более высокого минутного сердечного выброса и низкого общего периферического сопротивления сосудов, а в пожилом и старческом — за счет более высокого общего периферического сопротивления и уменьшения величины минутного сердечного выброса. При старении организма постоянство важнейших физиологических функций поддерживается в условиях уменьшения надежности и сокращения возможного диапазона физиологических изменений гомеостаза. Сохранение относительного гомеостаза при существенных структурных, обменных и функциональных изменениях достигается тем, что одновременно происходит не только угасание, нарушение и деградация, но и развитие специфических приспособительных механизмов. За счет этого поддерживается неизменный уровень содержания сахара в крови, рН крови, осмотического давления, мембранного потенциала клеток и т.д.

Существенное значение в сохранении гомеостаза в процессе старения организма имеют изменения механизмов нейрогуморальной регуляции, увеличение чувствительности тканей к действию гормонов и медиаторов на фоне ослабления нервных влияний.

При старении организма существенно изменяется работа сердца, легочная вентиляция, газообмен, почечные функции, секреция пищеварительных желез, функция желез внутренней секреции, обмен веществ и др. Изменения эти могут быть охарактеризованы как гомеорезис — закономерная траектория (динамика) изменения интенсивности обмена и физиологических функций с возрастом во времени. Значение хода возрастных изменений очень важно для характеристики процесса старения человека, определения его биологического возраста.

В пожилом и старческом возрасте снижаются общие потенциальные возможности приспособительных механизмов. Поэтому в старости при повышенных нагрузках, стрессах и других ситуациях вероятность срыва адаптационных механизмов и нарушения гомеостаза увеличиваются. Такое уменьшение надежности механизмов гомеостаза является одной из важнейших предпосылок развития патологических нарушений в старости.

Таким образом, гомеостаз – это интегральное понятие, функционально и морфологически объединяющее сердечно-сосудистую систему, систему дыхания, почечную систему, водно-электролитный обмен, кислотно-щелочное равновесие.

Основное назначение сердечно-сосудистой системы – подача и распределение крови по всем бассейнам микроциркуляции. Количество крови, выбрасываемое сердцем в 1 мин., составляет минутный объем. Однако функция сердечно-сосудистой системы заключается не просто в поддержании заданного минутного объема и его распределении по бассейнам, а в изменениях минутного объема в соответствии с динамикой потребностей тканей при разных ситуациях.

Главная задача крови – транспорт кислорода. Многие хирургические больные испытывают острое падение минутного объема, что нарушает доставку кислорода к тканям и может быть причиной гибели клеток, органа и даже всего организма. Поэтому оценка функции сердечно-сосудистой системы должна учитывать на только минутный объем, но и снабжение тканей кислородом и их потребность в нем.

Основное назначение системы дыхания – обеспечение адекватного газообмена между организмом и окружающей средой при постоянно меняющейся скорости обменных процессов. Нормальная функция системы дыхания – это поддержание постоянного уровня кислорода и углекислоты в артериальной крови при нормальном сосудистом сопротивлении в малом круге кровообращения и при обычной затрате энергии на дыхательную работу.

Данная система теснейшим образом связана с другими системами, и в первую очередь с сердечно-сосудистой. Функция системы дыхания включает в себя вентиляцию, легочное кровообращение, диффузию газов через альвеолярно-капиллярную мембрану, транспорт газов кровью и тканевое дыхание.

Функции почечной системы: почки являются основным органом, предназначенным для сохранения постоянства физико-химических условий в организме. Главная из их функций экскреторная. Она включает: регуляцию водно-электролитного баланса, поддержания кислотно-щелочного равновесия и удаление из организма продуктов обмена белков и жиров.

Функции водно-электролитного обмена: вода в организме играет транспортную роль, заполняя собой клетки, интерстициальные (промежуточные) и сосудистые пространства, является растворителем солей, коллоидов и кристаллоидов и принимает участие в биохимических реакциях. Все биохимические жидкости представляют собой электролиты, так как растворенные в воде соли и коллоиды находятся в диссоциированном состоянии. Перечислить все функции электролитов невозможно, но главными из них являются: сохранения осмотического давления, поддержание реакции внутренней среды, участие в биохимических реакциях.

Главное назначение кислотно-щелочного равновесия заключается в сохранении постоянства pH жидких сред организма как основы для нормальных биохимических реакций и, следовательно, жизнедеятельности. Метаболизм происходит при непременном участии ферментативных систем, активность которых тесно зависит от химической реакции электролита. Вместе с водно-электролитным обменом кислотно-щелочное равновесие играет решающую роль в упорядочении биохимических реакций. В регуляции кислотно-щелочного равновесия принимают участие буферные системы и многие физиологические системы организма.

Гомеостаз — Википедия. Что такое Гомеостаз

Гомеоста́з (др.-греч. ὁμοιοστάσις от ὅμοιος «одинаковый, подобный» + στάσις «стояние; неподвижность») — саморегуляция, способность открытой системы сохранять постоянство своего внутреннего состояния посредством скоординированных реакций, направленных на поддержание динамического равновесия. Стремление системы воспроизводить себя, восстанавливать утраченное равновесие, преодолевать сопротивление внешней среды. Гомеостаз популяции — способность популяции поддерживать определённую численность своих особей длительное время.

Американский физиолог Уолтер Кеннон (Walter B. Cannon) в 1932 году в своей книге «The Wisdom of the Body» («Мудрость тела») предложил этот термин как название для «координированных физиологических процессов, которые поддерживают большинство устойчивых состояний организма». В дальнейшем этот термин распространился на способность динамически сохранять постоянство своего внутреннего состояния любой открытой системы. Однако представление о постоянстве внутренней среды было сформулировано ещё в 1878 году французским учёным Клодом Бернаром.

Общие сведения

Термин «гомеостаз» чаще всего применяется в биологии. Многоклеточным организмам для существования необходимо сохранять постоянство внутренней среды. Многие экологи убеждены, что этот принцип применим также и к внешней среде. Если система неспособна восстановить свой баланс, она может в итоге перестать функционировать.

Комплексные системы — например, организм человека — должны обладать гомеостазом, чтобы сохранять стабильность и существовать. Эти системы не только должны стремиться выжить, им также приходится адаптироваться к изменениям среды и развиваться.

Свойства гомеостаза

Гомеостатические системы обладают следующими свойствами:

  • Нестабильность системы: тестирует, каким образом ей лучше приспособиться.
  • Стремление к равновесию: вся внутренняя, структурная и функциональная организация систем способствует сохранению баланса.
  • Непредсказуемость: результирующий эффект от определённого действия зачастую может отличаться от того, который ожидался.

Примеры гомеостаза у млекопитающих:

Важно отметить, что, хотя организм находится в равновесии, его физиологическое состояние может быть динамическим. Во многих организмах наблюдаются эндогенные изменения в форме циркадного, ультрадианного и инфрадианного ритмов. Так, даже находясь в гомеостазе, температура тела, кровяное давление, частота сердечных сокращений и большинство метаболических индикаторов не всегда находятся на постоянном уровне, но изменяются в течение времени.

Механизмы гомеостаза: обратная связь

Когда происходит изменение в переменных, наблюдаются два основных типа обратной связи, на которые реагирует система:

  1. Отрицательная обратная связь, выражающаяся в реакции, при которой система отвечает так, чтобы изменить направление изменения на противоположное. Так как обратная связь служит сохранению постоянства системы, это позволяет соблюдать гомеостаз.
    • Например, когда концентрация углекислого газа в организме человека увеличивается, лёгким приходит сигнал к увеличению их активности и выдыханию большего количество углекислого газа.
    • Терморегуляция — другой пример отрицательной обратной связи. Когда температура тела повышается (или понижается) терморецепторы в коже и гипоталамусе регистрируют изменение, вызывая сигнал из мозга. Данный сигнал, в свою очередь, вызывает ответ — понижение температуры (или повышение).
  2. Положительная обратная связь, которая выражается в усилении изменения переменной. Она оказывает дестабилизирующий эффект, поэтому не приводит к гомеостазу. Положительная обратная связь реже встречается в естественных системах, но также имеет своё применение.

Устойчивым системам необходимы комбинации из обоих типов обратной связи. Тогда как отрицательная обратная связь позволяет вернуться к гомеостатическому состоянию, положительная обратная связь используется для перехода к совершенно новому (и, вполне может быть, менее желанному) состоянию гомеостаза, — такая ситуация называется «метастабильность». Такие катастрофические изменения могут происходить, например, с увеличением питательных веществ в реках с прозрачной водой, что приводит к гомеостатическому состоянию высокой эвтрофикации (зарастание русла водорослями) и замутнению.

Экологический гомеостаз

Экологический гомеостаз наблюдается в климаксовых сообществах с максимально возможным биоразнообразием при благоприятных условиях среды.

В нарушенных экосистемах, или субклимаксовых биологических сообществах — как, например, остров Кракатау, после сильного извержения вулкана в 1883 — состояние гомеостаза предыдущей лесной климаксовой экосистемы было уничтожено, как и вся жизнь на этом острове. Кракатау за годы после извержения прошёл цепь экологических изменений, в которых новые виды растений и животных сменяли друг друга, что привело к биологической вариативности и в результате климаксовому сообществу. Экологическая сукцессия на Кракатау осуществилась за несколько этапов. Полная цепь сукцессий, приведшая к климаксу, называется присерией. В примере с Кракатау на этом острове образовалось климаксовое сообщество с восемью тысячами различных видов, зарегистрированных в 1983, спустя сто лет с того времени, как извержение уничтожило на нём жизнь. Данные подтверждают, что положение сохраняется в гомеостазе в течение некоторого времени, при этом появление новых видов очень быстро приводит к быстрому исчезновению старых.

Случай с Кракатау и другими нарушенными или нетронутыми экосистемами показывает, что первоначальная колонизация пионерными видами осуществляется через стратегии воспроизведения, основанные на положительной обратной связи, при которых виды расселяются, производя на свет как можно больше потомства, но при этом практически не вкладываясь в успех каждого отдельного. В таких видах наблюдается стремительное развитие и столь же стремительный крах (например, через эпидемию). Когда экосистема приближается к климаксу, такие виды заменяются более сложными климаксовыми видами, которые через отрицательную обратную связь адаптируются к специфическим условиям окружающей их среды. Эти виды тщательно контролируются потенциальной ёмкостью экосистемы и следуют иной стратегии — произведению на свет меньшего потомства, в репродуктивный успех которого в условиях микросреды его специфической экологической ниши вкладывается больше энергии.

Развитие начинается с пионер-сообщества и заканчивается на климаксовом сообществе. Это климаксовое сообщество образуется, когда флора и фауна пришла в баланс с местной средой.

Подобные экосистемы формируют гетерархии, в которых гомеостаз на одном уровне способствует гомеостатическим процессам на другом комплексном уровне. К примеру, потеря листьев у зрелого тропического дерева даёт место для новой поросли и обогащает почву. В равной степени тропическое дерево уменьшает доступ света на низшие уровни и помогает предотвратить инвазию других видов. Но и деревья падают на землю и развитие леса зависит от постоянной смены деревьев, круговорота питательных веществ, осуществляемого бактериями, насекомыми, грибами. Схожим образом такие леса способствуют экологическим процессам — таким, как регуляция микроклиматов или гидрологических циклов экосистемы, а несколько разных экосистем могут взаимодействовать для поддержания гомеостаза речного дренажа в рамках биологического региона. Вариативность биорегионов так же играет роль в гомеостатической стабильности биологического региона, или биома.

Биологический гомеостаз

Гомеостаз выступает в роли фундаментальной характеристики живых организмов и понимается как поддержание внутренней среды в допустимых пределах.

Внутренняя среда организма включает в себя организменные жидкости — плазму крови, лимфу, межклеточное вещество и цереброспинальную жидкость. Сохранение стабильности этих жидкостей жизненно важно для организмов, тогда как её отсутствие приводит к повреждению генетического материала.

В отношении любого параметра организмы делятся на конформационные и регуляторные. Регуляторные организмы сохраняют параметр на постоянном уровне, независимо от того, что происходит в среде. Конформационные организмы позволяют окружающей среде определять параметр. Например, теплокровные животные сохраняют постоянную температуру тела, тогда как холоднокровные демонстрируют широкий диапазон температур.

Речь не идёт о том, что конформационные организмы не обладают поведенческими приспособлениями, позволяющими им в некоторой степени регулировать взятый параметр. Рептилии, к примеру, часто сидят на нагретых камнях утром, чтобы повысить температуру тела.

Преимущество гомеостатической регуляции состоит в том, что она позволяет организму функционировать более эффективно. Например, холоднокровные животные, как правило, становятся вялыми при низких температурах, тогда как теплокровные почти так же активны, как и всегда. С другой стороны, регуляция требует энергии. Причина, почему некоторые змеи могут есть только раз в неделю, состоит в том, что они тратят намного меньше энергии для поддержания гомеостаза, чем млекопитающие.

Клеточный гомеостаз

Регуляция химической деятельности клетки достигается с помощью ряда процессов, среди которых особое значение имеет изменение структуры самой цитоплазмы, а также структуры и активности ферментов. Авторегуляция зависит от температуры, степени кислотности, концентрации субстрата, присутствия некоторых макро- и микроэлементов. Клеточные механизмы гомеостаза направлены на восстановление естественно погибших клеток тканей или органов в случае нарушения их целостности.

Регенерацияпроцесс обновления структурных элементов организма и восстановление их количества после повреждения, направленный на обеспечение необходимой функциональной активности.

В зависимости от регенерационной реакции ткани и органы млекопитающих можно разделить на 3 группы:

1) ткани и органы, для которых характерна клеточная регенерация (кости, рыхлая соединительная ткань, кроветворная система, эндотелий, мезотелий, слизистые оболочки желудочно-кишечного тракта, дыхательных путей и мочеполовой системы)

2) ткани и органы, для которых характерна клеточная и внутриклеточная регенерация (печень, почки, лёгкие, гладкие и скелетные мышцы, вегетативная нервная система, поджелудочная железа, эндокринная система)

3) ткани, для которых характерно преимущественно или исключительно внутриклеточная регенерация (миокард и ганглиозные клетки центральной нервной системы)

В процессе эволюции сформировались 2 типа регенерации: физиологическая и репаративная.

Гомеостаз в организме человека

Разные факторы влияют на способность жидкостей организма поддерживать жизнь. В их числе такие параметры, как температура, солёность, кислотность и концентрация питательных веществ — глюкозы, различных ионов, кислорода, и отходов — углекислого газа и мочи. Так как эти параметры влияют на химические реакции, которые сохраняют организм живым, существуют встроенные физиологические механизмы для поддержания их на необходимом уровне.

Гомеостаз нельзя считать причиной процессов этих бессознательных адаптаций. Его следует воспринимать как общую характеристику многих нормальных процессов, действующих совместно, а не как их первопричину. Более того, существует множество биологических явлений, которые не подходят под эту модель — например, анаболизм.

Другие сферы

Понятие «гомеостаз» используется также и в других сферах.

Актуарий может говорить о рисковом гомеостазе, при котором, к примеру, люди, у которых в машине установлена антиблокировочная система, не находятся в более безопасном положении по сравнению с теми, у кого она не установлены, потому что эти люди бессознательно компенсируют более безопасный автомобиль рискованной ездой. Это происходит потому, что некоторые удерживающие механизмы — например, страх — перестают действовать.

Социологи и психологи могут говорить о стрессовом гомеостазе — стремлении популяции или индивида оставаться на определённом стрессовом уровне, зачастую искусственно вызывая стресс, если «естественного» уровня стресса недостаточно.

Примеры

Многие из этих органов контролируются гормонами гипоталамо-гипофизарной системы.

См. также

Источники

1. О.-Я.Л.Бекиш. Медицинская биология. — Минск: Ураджай, 2000. — 520 с. — ISBN 985-04-0336-5.

Лекция №4. «Внутренняя среда организма. Кровь. Гомеостаз, состав, свойства и функции крови»

Кровь – это жидкая ткань, циркулирующая по сосудам, осуществляющая транспорт веществ и обеспечивающая питание и обмен веществ всех клеток организма. Красный цвет ей придает гемоглобин, содержащийся в эритроцитах. Учение о крови и ее болезнях — гематология. Для внутренней среды организма характерно относительно динамическое постоянство внутренней среды – гомеостаз. Морфологическим субстратом, регулирующим обменные процессы между кровью и тканями являются гистогематические барьеры, состоящие из эндотелия капилляров, базальной мембраны, соединительной ткани и клеточных мембран. Система крови включает в себя жидкую кровь, органы кроветворения (красный костный мозг, лимфатические узлы), органы кроворазрушения (печень) и механизмы регуляции.

Физиологические функции крови:

1. дыхательная (перенос кислорода от легких к тканям и углекислого газа от тканей к легким)

2. трофическая (доставка питательных веществ, минеральных солей, витаминов от органов пищеварения к тканям)

3. экскреторная (удаление из тканей конечных продуктов метаболизма)

4. терморегуляторная (регуляция температуры тела путем охлаждения энергоемких органов и наоборот)

5. гомеостатическая (поддержание постоянства среды организма)

6. регуляция вводно-солевого обмена между кровью и тканями

7. защитная (участие в клеточном и гуморальном иммунитете, в свертывании)

8. гуморальная регуляция (перенос гормонов и медиаторов)

9. креаторная (перенос макромолекул, которые осуществляют межклеточную передачу информации)


Общее количество крови в организме взрослого человека в норме составляет 4-6 литров. В покое в сосудистой системе находится 60-70% крови – циркулирующая кровь, оставшаяся кровь – в кровяных депо – запасная, депонированная. В крови важнее плазма, т. к. она поддерживает давление крови. Кровь контактирует с клетками через межтканевую жидкость (искл – косный мозг и селезенка). Кровь состоит из жидкой части – плазмы и клеток – форменных элементов: эритроциты, тромбоциты, лейкоциты. Плазма крови на 90% состоит из воды и на 10% из белков и минеральных солей.

Основные группы белков плазмы:

1. альбумины (связывают лекарственные вещества, витамины, гормоны, пигменты)

2. глобулины (транспортируют жиры, глюкозу, медь, железо, вырабатывают антитела – иммуноглобулины, a и b агглютинины крови)

3. фибриноген (участвует в свертываемости крови)


Отсутствие этого белка в крови приводит к развитию гемофилии – несвертываемости крови. К небелковым соединениям плазмы относят аминокислоты, полипептиды, мочевину. В плазме содержится более 50 различных видов гормонов и пигментов. Белок плазмы, обладающий бактерицидными свойствами – пропердин. Белок плазмы составляет 7-8%, остаточный азот – 30-40 млг%, неорганические вещества – 1%. Давление, которое оказывают растворенные в плазме минеральные соли – осмотическое )определяется поваренной солью). В норме составляет 7,6 атм. Растворы, у которых осмотическое давление равно осмотическому давлению плазмы – изотонические, если больше – гипертонические, меньше – гипотонические. Изотонический (физиологический) раствор – 0,9% поваренной соли.

Давление, создаваемое белками плазмы (альбумины), способными притягивать и удерживать воду — онкотическое (20-30 мм.рт. ст). Постоянство этих давлений является жестким параметром гомеостаза.

Реакция крови – pH обусловлена соотношением положительных водородных и отрицательных гидроксильных ионов (7,36 – 7,42). Сдвиг ее в кислую сторону – ацидоз, в щелочную – алкалоз. Поддержание на этом уровне достигается за счет буферных систем крови:

1. гемоглобина

2. карбонатов

3. фосфатов

4. белков плазмы

Эритроцит (eritros – красный, cutos – клетка) – безъядерный форменный элемент крови, содержащий гемоглобин. Имеет форму двояковогнутого диска. Они гибкие, эластичные, легко деформируются, образуются в красном костном мозге, разрушаются в печени и селезенке. Живут 120 дней. Молодые имеют ядро – ретикулоциты. По мере роста ядро заменяется молекулой гемоглобина (дыхательный пигмент). Эритроциты придают крови вязкость (у мужчин она больше). Норма у женщин – 3,7 – 4,7 млн., у мужчин –4 — 5 млн., у новорожденных – 6 млн. При движении в капиллярах эритроциты приобретают обтекаемую форму пули и движутся согласованно друг за другом. В обычных кровеносных сосудах движение эритроцитов опережает движение крови в целом. Это происходит вследствие того, что эритроциты при движении крови концентрируются в центральной, наиболее быстрой части канала.

При нормальном движении крови скорость максимальна в центре и практически нулевая у стенок. Разные части диска эритроцита оказываются под действием слоев, движущимися с разными скоростями, и эритроцит начинает катиться. Он начинает катиться как гусеница трактора. Кровяные тельца несут на своей поверхности отрицательный заряд, на внутренней поверхности сосуда заряд тот же, поэтому элементы крови не соприкасаются со стенками кровеносного сосуда. Кровь движется в сосуде не прямым потоком, а ее частицы в процессе движения имеют спиральные траектории, т. е. поток крови закручивается. Это не позволяет частицам крови слипаться и предотвращает образование тромбов. Установлено, что потоки в малом и большом кругах кровообращения вращаются в разные стороны (В. Захаров, В. Шумаков).

Функции эритроцитов:

1. дыхательная (транспортная)

2. питательная (на их поверхности оседают аминокислоты)

3. защитная (связь токсинов, участие в свертывании крови)

4. ферментативная (перенос ферментов)

5. буферная (поддержание pH с помощью гемоглобина)

6. креаторная (перенос макромолекул, осуществляющих межклеточные взаимодействия)

Увеличение количества эритроцитов – эритроцитоз, уменьшение – эритроцитопения.

Гемоглобин – белок — хромопротеид, имеющий в своем составе атом железа. У мужчин – 13 – 16 гр%, у женщин – 12 – 14 гр%. Общее его количество в крови – 700гр. Гемоглобин включает в себя до 600 аминокислот, белок – глобин, 4 молекулы гема, которые содержат атом железа. В мышцах содержится миоглобин, образующийся в красном костном мозге.

Физиологические соединения гемоглобина:

1. оксигемоглобин (в артериальной крови – HbO2)

2. восстановленный (в венозной крови – Hb)

3. карбгемоглобин (в венозной крови – HbCO2)

К патологическим соединениям относят:

1. карбоксигемоглобин (HbCO) – очень прочное вещество, связь с угарным газом. При этом молекулы О2 не присоединяются, что приводит к гипоксии и отравлению.

2. метилгемоглобин

Количество гемоглобина измеряется гемометром.

Гемолиз – процесс внутрисосудистого распада эритроцитов и выход из них гемоглобина в плазму, которая окрашивается в красный цвет и становится прозрачной (лаковая кровь).

Виды гемолиза:

1. Осмотический – при понижении осмотического давления крови происходит набухание эритроцитов с последующим их разрушением.

2. Химический – оболочка эритроцитов разрушается под действием химических веществ (алкоголь, эфир, бензол, хлороформ)

3. Механический – разрушение оболочки эритроцитов при интенсивном встряхивании ампульной крови.

4. Термический – результат замораживания и размораживания ампульной крови.

5. Биологический – разрушение эритроцитов при укусах змей, насекомых, скорпионов, при переливании несовместимой крови.

Скорость (реакция) оседания эритроцитов (СОЕ или РОЕ)– изменение физико-химических свойств крови, измеряемое величиной столба плазмы при оседании эритроцитов. Величина СОЕ зависит от содержания в крови белков глобулинов и фибриногена. При любых воспалительных процессах их концентрация в крови увеличивается, а также увеличение СОЕ происходит перед родами.

Лейкоцит (leukos – белый, cutos – клетка) – белое или бесцветное кровяное тельце, не содержит гемоглобина. Образуется в красном костном мозге, лимфатических узлах, фолликулах и селезенке, живут 20 дней. Клетки имеют ядро. Норма: 4,5 – 9,5 тыс. Увеличение их количества – лейкоцитоз, уменьшение – лейкоцитопения.

Виды лейкоцитов:

1. гранулоциты (зернистые): нейтрофилы, эозинофилы, базофилы

2. агранулоциты (незернистые): лимфоциты, моноциты.

Ядра всех гранулоцитов разделены на 2 – 5 частей, которые соединяются нитями (перетяжками). Самые мелкие – лимфоциты, имеют крупное округлое ядро, самые крупные из зернистых – моноциты, имеют бобовидное ядро. Основная масса в крови — сегментоядерные нейтрофилы. Процентное соотношение отдельных форм лейкоцитов в крови — лейкоцитарная формула:

1. Лейкоциты – 4,5 – 9,5 тыс. в мм3.

2. базофилы – 0,5 – 1 %

3. Эозинофилы – 1 – 5 %

4. Нейтрофилы – 50 – 72 % (сегментоядерные)

5. Лимфоциты – 18 – 38 %

6. Моноциты – 2 – 10 %

Свойства лейкоцитов:

1. амебовидная подвижность

2. диапедез – способность выходить через неповрежденную стенку сосуда

3. фагоцитоз – способность окружать инородные тела и микроорганизмы, захватывать их в цитоплазму, поглощать и переваривать (И.И. Мечников 1882 год)

Функции лейкоцитов:

1. Защитная (фагоцитоз)

2. Антитоксическая – выработка антитоксинов, обезвреживающих продукты жизнедеятельности микробов.

3. Выработка антител, обеспечивающих иммунитет – невосприимчивость к инфекции.

4. Участвуют во всех этапах воспаления, стимулируют регенеративные процессы, ускоряют заживление ран.

5. Ферментативная – вырабатывают ферменты для фагоцитоза.

6. Участвуют в процессах свертывания крови путем выработки гепарина и гистамина.

7. Являются центральным звеном иммунной системы, выполняют функцию цензуры, сохраняя генетический гомеостаз.

8. Обеспечивают уничтожение собственных мутантных клеток.

9. Образуют активные пирогенны, формируют лихорадочную реакцию.

10. Несут макромолекулы с информацией, обеспечивая связь и целостность организма.

Тромбоциты (trombos – сгусток крови) – безъядерная кровяная пластинка, участвующая в свертывании крови и необходимая для поддержания целостности сосудистой стенки. Образуется в красном костном мозге и в гигантских клетках – мегакариоцитах, живут до 10 дней. Норма их в крови – 200 – 300 тыс. в мм3. Увеличение их количества – тромбоцитоз, уменьшение – тромбоцитопения.

Свойства тромбоцитов:

1. амебовидная подвижность

2. фагоцитоз

3. прилипание к чужеродной поверхности и склеивание частиц между собой

4. легкая разрушаемость

5. выделение и поглощение БАВ: серотонин, адреналин, норадреналин

6. содержат в себе специфические соединения, способствующие свертыванию крови

Функции тромбоцитов:

1. Активное участие в образовании тромба

2. Участие в остановке кровотечение (гемостаз)

3. Защитная за счет склеивания микробов (агглютинация)

4. Выработка ферментов для остановки кровотечения

5. Транспорт креативных веществ, сохраняющих структуру сосудистой стенки

6. Оказывают влияние на состояние гистогематических барьеров между кровью и тканевой жидкостью путем изменения проницаемости стенок капилляров.

Гемостаз –остановка кровотечения.

Виды:

1. Сосудисто-тромбоцитарный

2. Коагуляционный

1. Данный вид распространяется на мелкие кровеносные сосуды и каппиляры. В результате повреждения сосуда нервные импульсы идут в продолговатый мозг, затем обратно, что приводит к рефлекторному спазму стенок сосуда. Это временная реакция. Длительный спазм обеспечивают серотонин, адреналин и норадреналин.

Затем начинается уплотнение тромбоцитарной пробки. Тромбоциты и лейкоциты устремляются в зону повреждения, образуется тромб. Пробка уплотняется за счет белка тромбоцитов – тромбостенин.

2. Осуществляется за счет свертывания крови. В результате повреждения стенки кровеносного сосуда белок фибриноген переходит в фибрин, который не растворяется. Это ферментативный процесс.

В нем принимают участие фибриноген, протромбин, тромбопластин, ионы калия и 15 плазменных факторов, которые образуются в печени при наличии витамина К.

В первой фазе протромбиназа переходит в протромбин, во второй фазе протромбин переходит в тромбин, в третьей фазе фибриноген переходит в фибрин. Для этого необходим тромбин и ионы кальция. Нити фибрина сокращаются и уплотняются. В норме кровь в сосудах не свертывается, т.к.:

1. Факторы системы крови находятся в неактивной форме

2. Содержатся их ингибиторы

3. Наличие фибринолитической системы

Гемопоэз – образование форменных элементов крови в красном костном мозге. Эритроциты образуются в синусах красного костного мозга. Тромбоциты образуются из мегакариоцитов в красном костном мозге и легких.

Регуляция гемопоэза осуществляется нервным и гуморальным путем: витамин В, С, фолиевая кислота, железо, кобальт, марганец, медь, фактор Кастла (дно желудка). Нервная регуляция осуществляется гипоталамусом и корой.

Стволовая клетка костного мозга дает начало 2 клеткам – предшественницам (миелопоэза и лимфопоэза). Из клетки – предшественницы лимфопоэза образуются клетка – предшественница Т – лимфоцита и клетка – предшественница В – лимфоцита. Клетка – предшественница Т – лимфоцита – т – лимфобласт – Т – пролимфоцит – Т – лимфоцит. Клетка – предшественница В – лимфоцита – В – лимфобласт – В – пролимфоцит – В – лимфоцит. Клетка – предшественница миелопоэза дает начало:

· Базофильному миелобласту – базофил

· Эозинофильному миелобласту – промиелоцит – миелоцит – эозинофил

· Мегакариобласту – тромбоцит

· Нейтрофильному миелобласту – нейтрофил

Лимфопоэз дает начало Т и В – лимфоцитам, миелопоэз – форменным элементам крови.

Система крови включает в себя жидкую кровь, органы кровообразования и кроворазрушения. Все форменные элементы крови в нормальных условиях образуются в красном костном мозге (у взрослых): грудина, лопатки, ребра, позвонки, тазовые кости. У детей кроветворение осуществляется и в трубчатых костях. Родоначальником всех клеток является стволовая кроветворная клетка костного мозга, которые трансформируются в клетки – предшественники, дающие начало миелопоэзу и лимфопоэзу. Эти процессы регулируются гемопоэтинами, среди которых различают эритро- лейко- и тромбоцитопоэтины. Клетки-предшественники трансформируются в бластные формы миелоцитарного, эритроцитарного и тромбоцитарного ростков крови, из которых происходит развитие зрелых форм: Т и В-лейкоцитов, моноцитов, базофилов, эозинофилов, нейтрофилов, эритроцитов и тромбоцитов.

В 1901 году австриец Ландштейнер и в 1903 году чех Янский обнаружили, что при смешивании крови разных людей часто наблюдается агглютинация эритроцитов (склеивание) с их последующим гемолизом. В дальнейшем было обнаружено, что в эритроцитах содержатся агглютиногены А и В (антигены), а в плазме крови находятся агглютинины a и b (антитела), склеивающие эритроциты. Агглютиногены и агглютинины у разных людей могут быть по одному, вместе или отсутствовать. Агглютиноген А и агглютинин a являются одноименными. Агглютинация происходит, если агглютиногены встречаются в крови с одноименными агглютининами, поэтому в крови любого человека содержатся разноименные агглютиногены и агглютинины. Их четыре комбинации:

1. I (0) – ab

2. II (А) – Ab

3. III (B) – Ba

4. IU (AB)

Кровь людей первой группы R(-) можно переливать любому человеку – универсальные доноры. Люди, имеющие 4 группу крови, являются универсальными реципиентами. Но в современной медицинской практике пришли к выводу, что переливать можно только одногруппную кровь, т.к. в эритроцитах разных людей найдено более 500 видов агглютиногенов. Для определения группы крови необходимо иметь стандартные сыворотки, в которых имеются известные агглютинины. Каплю крови добавляют к сывороткам и по наличию агглютинации определяют принадлежность группы. Если агглютинации нет нигде – I гр., есть во всех – IV, в I и III – II гр., в I и II – III гр.

В 1940 году Ландштейнер и Винер нашли в крови макаки белок, который назвали резус-фактор, а макаку – резус. Белок содержится в эритроцитах. У 85% людей этот белок имеется, кровь их R(+), у остальных кровь R(-). Резус-фактор передается по наследству, не меняется в течение жизни и имеет большое значение при беременности. Если плод наследует резус-положительную кровь от отца, то это вызывает в крови матери образование анти-резус-агглютининов, которые вызывают в крови плода агглютинацию и гемолиз эритроцитов. В настоящее время таким беременным назначают препараты, блокирующие выработку этих веществ.


гомеостаз (в физиологии) — это… Что такое гомеостаз (в физиологии)?


гомеостаз (в физиологии)

(от греч. homolos – подобый, одинаковый и stasis – состояние, неподвижность) – относительное динамическое постоянство состава и свойств внутренней среды организма и устойчивость основных его физиологических функций. Благодаря приспособительным механизмам физические и химические параметры, определяющие жизнедеятельность организма, меняются в сравнительно узких пределах, несмотря на значительные изменения внешних условий.

Энциклопедический словарь по психологии и педагогике. 2013.

  • ГОЛЬЦКНЕХТА – ЯКОБСОНА СИМПТОМ
  • Гомеостаз (ис)

Смотреть что такое «гомеостаз (в физиологии)» в других словарях:

  • гомеостаз — Общий принцип саморегулирования живых организмов. Перлз настоятельно указывает на важность этого понятия в своей работе The Gestalt Approach and Eye Witness to Therapy . Краткий толковый психолого психиатрический словарь. Под ред. igisheva. 2008 …   Большая психологическая энциклопедия

  • Гомеостаз — I Гомеостаз (греч. homoios подобный, одинаковый + греч. stasis стояние, неподвижность) способность организма поддерживать функционально значимые переменные в пределах, обеспечивающих его оптимальную жизнедеятельность. Регуляторные механизмы,… …   Медицинская энциклопедия

  • Гомеостаз — (греч. homоios подобный, statis стояние, неподвижность) 1. регуляторные процессы, поддерживающие оптимальное для функционирования живого существа постоянство внутренней среды организма (термин и изучение упомянутых процессов тесно связаны с… …   Энциклопедический словарь по психологии и педагогике

  • гомеостаз — (гомео + греч. stasis стояние, неподвижность; син. гомеостазис) в физиологии относительное динамическое постоянство внутренней среды (крови, лимфы, тканевой жидкости) и устойчивость основных физиологических функций (кровообращения, дыхания,… …   Большой медицинский словарь

  • Гомеостаз —         гомеостазис (от Гомео… и греч. stásis состояние, неподвижность), в физиологии, относительное динамическое постоянство состава и свойств внутренней среды и устойчивость основных физиологических функций организма человека, животных и… …   Большая советская энциклопедия

  • Гомеостаз — (греч. homeios – подобный, сходный, statis – стояние, неподвижность). Подвижное, но устойчивое равновесие какой либо системы (биологической, психической), обусловленное ее противодействием, нарушающим это равновесие внутренним и внешним факторам… …   Толковый словарь психиатрических терминов

  • ГОМЕОСТАЗ — (Homeostasis) поддержание равновесия между противостоящими механизмами или системами; основной принцип физиологии, который следует считать также и основным законом психического поведения …   Словарь по аналитической психологии

  • ГОМЕОСТАЗ — в физиологии (от греч, homoios подобный, одинаковый и stasis неподвижность), способность биол. систем противостоять изменениям и сохранять относит, динамич. постоянство состава и свойств внутр. среды. У с. х. животных Г. регулируется… …   Сельско-хозяйственный энциклопедический словарь

  • ГОМЕОСТАЗ — гомеостаз, гомеостазис (от греч. hómoios — подобный, одинаковый и stásis — стояние, неподвижность) в физиологии, относительное динамическое постоянство состава и свойств внутренней среды организма и устойчивость его основных… …   Ветеринарный энциклопедический словарь

  • Гомеостаз — (от греч. homoios подобный, одинаковый, stasis неподвижность, состояние) в физиологии: относительно динамическое постоянство внутренней среды (крови, лимфы, тканевой жидкости), устойчивость основных физиологических функций (кровообращения,… …   Коррекционная педагогика и специальная психология. Словарь


Примеры гомеостаза

Гомеостаз относится к способности организма или окружающей среды поддерживать состояние внутреннего баланса и физического благополучия, несмотря на изменения или внешние факторы. Успешный гомеостаз жизненно важен для выживания любого живого существа, и способность поддерживать гомеостаз даже в неблагоприятных условиях является одним из важнейших эволюционных преимуществ.

Вот несколько примеров гомеостаза, начиная с человеческого тела, а затем переходя к примерам животных и растений.

Примеры гомеостаза в человеческом теле

Человеческое тело — удивительно сложная машина, но многие его части и процессы существуют просто для поддержания гомеостаза. То есть машина существует, поэтому машина может продолжать существовать.

  • Внутренняя температура тела человека является прекрасным примером гомеостаза. Когда кто-то здоров, его тело поддерживает температуру около 98,6 градусов по Фаренгейту (37 градусов по Цельсию). Будучи теплокровными существами, люди могут повышать или понижать внутреннюю температуру, чтобы поддерживать ее на желаемом уровне.Независимо от того, лежите ли вы на летнем солнце или играете на зимнем снегу, температура вашего тела меняется только на градус или два. Это пример поддержания гомеостаза. Когда вы дрожите от холода или потеете летом, ваше тело пытается поддерживать гомеостаз.

  • Глюкоза — это самая основная форма сахара, и единственный вид, который организм может использовать напрямую. Организм должен поддерживать надлежащий уровень глюкозы, чтобы человек оставался здоровым. Когда уровень глюкозы становится слишком высоким, поджелудочная железа выделяет гормон, известный как инсулин.Если уровень глюкозы в крови падает слишком низко, печень снова превращает гликоген в крови в глюкозу, повышая уровень.

  • Когда бактерии или вирусы, которые могут вызвать заболевание, попадают в ваше тело, ваша лимфатическая система срабатывает, чтобы поддерживать гомеостаз. Он помогает бороться с инфекцией до того, как она заразит вас, обеспечивая ваше здоровье.

  • Поддержание нормального кровяного давления является примером гомеостаза. Сердце может ощущать изменения кровяного давления, посылая сигналы в мозг, который затем отправляет соответствующие инструкции сердцу.Если артериальное давление слишком высокое, сердце должно замедлиться; если он слишком низкий, сердце должно ускориться.

  • Более половины массы тела человека составляет вода, и поддержание правильного водного баланса является примером гомеостаза. Клетки, в которых слишком много воды, раздуваются и даже могут взорваться. Клетки с недостаточным количеством воды могут в конечном итоге сжаться. Ваше тело (и здоровое потребление жидкости) поддерживает правильный водный баланс, поэтому ни одна из этих ситуаций не возникает.

  • Уровень кальция в крови должен поддерживаться на должном уровне.Тело регулирует эти уровни на примере гомеостаза. Когда уровень снижается, паращитовидная железа выделяет гормоны. Если уровень кальция становится слишком высоким, щитовидная железа помогает, фиксируя кальций в костях и снижая уровень кальция в крови.

  • Нервная система помогает поддерживать гомеостаз в паттернах дыхания. Поскольку дыхание в основном непроизвольное, нервная система гарантирует, что организм получает столь необходимый кислород, вдыхая соответствующее количество кислорода.

  • Еда, питье и даже простое дыхание могут привести к попаданию в организм трудноусвояемых и даже опасных веществ.Организм поддерживает гомеостаз, выводя эти вещества через мочевыделительную и пищеварительную системы. Человек просто мочится и выводит токсины и другие неприятные вещества из крови, восстанавливая гомеостаз в организме человека.

Гомеостаз у животных

Примеры гомеостаза можно найти в животном мире, от рыб, пьющих воду, до животных, ищущих солонцев!

  • Знаете ли вы, что многие из поведения ваших домашних животных предназначены для поддержания гомеостаза? Например, когда ваша собака высовывает язык и штаны, она в основном потеет, что снижает температуру тела.Ваша кошка любит спать в солнечных лучах? То же самое, только ваша кошка пытается согреться. Все дело в поддержании гомеостаза.

  • У хладнокровных животных гомеостаз — это все. Не имея возможности контролировать температуру своего тела, рептилии, земноводные и рыбы идут на все, чтобы найти подходящий климат. Например, африканская двоякодышащая рыба. Когда наступает лето, двоякодышащие рыбы окутываются комком грязи и слизи и засыпают от жары, выходя наружу через несколько месяцев, когда все остынет.

  • Температура тела — не единственный компонент гомеостаза. Также есть микробиом, бактерии и другие организмы, которые растут внутри животных и поддерживают их здоровье. Чтобы получить и сохранить эти микроорганизмы, молодые животные, от коал до слонов, будут есть фекалии своих родителей. К счастью, мы, люди, рождаемся с настоящими ошибками.

  • Солевые лизунцы — еще один пример животных, поддерживающих гомеостаз. Когда их диета не обеспечивает определенных необходимых минералов, животные, такие как лоси и сурки, будут искать и лизать камни и другие предметы, содержащие эти минералы.Это продолжается миллионы лет. Вы только посмотрите на Государственный парк Биг Боун Лик в Кентукки. У них были мамонты на солонце!

  • Вы когда-нибудь задумывались, пьют ли рыбы воду? Они делают! Поддержание уровня воды в организме — жизненно важный гомеостатический процесс. Пресноводные рыбы поглощают воду через жабры, а морские — через рот. Чтобы избежать передозировки соли, у морских рыб есть специальные клетки, которые выкачивают соль из их тела.

Гомеостаз у растений

Люди и животные — не единственные, кто полагается на гомеостаз.Растениям необходимо поддерживать одинаковый баланс, чтобы выжить и процветать.

  • Подобно животным, растения также «дышат», хотя обмен происходит в обратном порядке по сравнению с тем, что мы делаем. Растения поглощают углекислый газ и выделяют кислород. Знаете ли вы, что они также регулируют, сколько они принимают и выпускают? У листьев есть устьица, отверстия на нижней стороне, которые расширяются и сжимаются, чтобы получить правильное сочетание. Это гомеостаз.

  • Листья — это машины для поддержания гомеостаза.В дополнение к процессу фотосинтеза, описанному выше, те же самые устьицы поглощают и выделяют питательные вещества, включая соль и многие другие, в зависимости от того, нужно ли растению больше или меньше.

  • Стомы представляют тройную угрозу. Они регулируют фотосинтез и питание растений, но также поддерживают оптимальный уровень воды в растении. Когда устьица широко раскрываются, они иссушают растение. Когда они закрываются, они помогают удерживать воду.

  • Растения делают все возможное, чтобы поддерживать нужную температуру.Поскольку растения менее подвижны, чем среднестатистические животные, они должны проявлять изобретательность. Подсолнухи, например, получили свое название не зря: они гелиотропы, следующие за солнцем по небу, чтобы максимизировать фотосинтез. Растения также подвергаются гравитропизму, используя гравитацию для их роста. Корни эволюционировали, чтобы двигаться в сторону гравитационного притяжения, в то время как побеги стреляют против него.

  • В организме растений, как и животных, есть полезные бактерии. Существует целая категория микроорганизмов, называемых PGPR, или «ризобактерии, способствующие росту растений».«Бактерии обитают в почве и любят болтаться в корнях. На самом деле, им это так нравится, они платят ренту: PGPR защищают другие микробы, вызывающие болезни, и помогают растениям использовать минералы и вырабатывать важные гормоны.

Гомеостаз and You

Гомеостаз универсален.На самом деле, многие биологи описывают весь мир природы как поддерживающий гомеостаз, реагирующий на изменение климата и видового разнообразия, чтобы поддерживать планету Земля в наиболее пригодном для жизни состоянии.

На более личном уровне гомеостаз — это просто слово для живых существ, которые упорядочивают свои тела, чтобы продолжать жить.Болезнь нарушает гомеостаз, и здоровье во многом определяется тем, насколько хорошо организм поддерживает гомеостатический баланс.

Если вы хотите продолжить свое путешествие по человеческому телу, вы можете углубиться в изучение белков, его основных строительных блоков. В качестве альтернативы, вы можете пойти дальше и почитать о макроэволюции, чтобы найти примеры массивных систем, поддерживающих свой собственный гомеостаз в масштабах всего вида.

Диаграмма человеческого тела как примеры гомеостаза.

Что такое гомеостаз тканей? (с иллюстрациями)

Для нормального функционирования различные типы тканей и органов в организме должны работать согласованно независимо от внешних условий. Повреждения от травм и нормальные функции могут быть восстановлены как часть химии тела. Оптимальное здоровье обычно зависит от гомеостаза тканей, который может регулироваться генетикой, а также молекулярными процессами в клетках. Этот процесс регулируется генами и, возможно, стволовыми клетками, которые, по мнению некоторых исследователей, могут дифференцироваться в ткани органа, требующие восстановления.Гомеостаз тканей обычно включает постоянство содержания крови, координацию деятельности органов и нормальную функцию клеток.

Гомеостаз поддерживается благодаря сотрудничеству систем органов, работающих в равновесии.

На функции организма обычно влияют действия, происходящие на молекулярном уровне.Молекулы, называемые гликозаминогликанами (ГАГ), могут играть роль в структуре клеточных элементов и часто регулируют активность клеток. Эти функции обычно контролируются взаимодействием ГАГ с другими белками, которые могут включать в себя различные ферменты, соединения факторов роста, рецепторы, а также молекулы, которые позволяют белкам прикрепляться друг к другу. Различные процессы часто несут ответственность за регулирование функции и структуры соединений, а также взаимодействия между ними. Когда все это регулируется, гомеостаз тканей обычно сохраняется.

Неврологические заболевания могут возникать из-за дисбаланса регулирующих функций организма.

Гомеостаз в организме обычно зависит от внутреннего равновесия, которое поддерживается независимо от факторов окружающей среды, таких как температура.Процессы, которые могут вызвать старение, неврологическую дегенерацию, гибель клеток и нарушить заживление ран, часто приводят к нарушению баланса тканевого гомеостаза. Многие неврологические и сердечно-сосудистые заболевания могут возникать из-за дисбаланса регулирующих функций организма.

Внутренняя среда тела обычно контролируется молекулярно, составом крови и наличием нормального уровня жидкости между тканями.Здоровая неврологическая активность и контроль со стороны эндокринной системы обычно помогают регулировать деятельность органов и систем в целом. Тело обычно состоит из таких элементов, как эпителиальная выстилка, соединительная, мышечная и нервная ткань. Функции органов и систем органов обычно важны для гомеостаза тканей, а также жидкого состава и структуры полостей тела.

Гомеостаз тканей может также зависеть от поддержания функций организма, таких как пищеварение, дыхание, мочеиспускание и лимфатический контроль.Как правило, важно здоровье кожи, а также нормальная поддержка скелета, движения мышц и реакции между нервной системой и мышцами. Некоторые исследователи также считают, что стволовые клетки могут обновляться, чтобы поддерживать ткани. Механизмы, участвующие в активации этих клеток, могут быть вовлечены в контроль и восстановление гомеостаза тканей.

Процессы, нарушающие заживление ран, часто приводят к нарушению баланса тканей гомеостаза..